Transient Stability Analysis for Grid-tied VSG Considering High-Order Nonlinear Interactions Between Active and Reactive Power Control Loops

IEEE Transactions on Power Electronics(2024)

引用 0|浏览0
暂无评分
摘要
Transient stability issues of power converter systems have attracted much attention. Generally, the converter systems behave in high-order nonlinear dynamics due to multiple cascaded control loops, which become obstacles for transient stability analysis. Considering the dynamic coupling between active power and reactive power control loops, the grid-tied VSG system is a third-order nonlinear system. Including the equal area criterion (EAC), many conventional methods are only applicable to second-order systems and cannot fully capture damping effects. To fill this gap, a novel iterative EAC method is proposed to handle the transient stability of the third-order VSG system. Firstly, an implicit relationship from the output voltage to the power angle is derived by integral substitution. From energy aspects, the dynamic relations between voltage, power angle, and frequency are approximated by algebraic equations through iterative calculation. The impact of nonlinear damping is also fully captured quantitatively. Both conservatism and quantity of computation are improved compared with previous studies. Furthermore, the critical clearing angles (CCA) under different disturbance forms and degrees are derived. In addition, some discussions about current limiters’ influence and different controller parameters’ influence are given. Simulation and hardware-in-the-loop (HIL) experiments based on RT-Lab are conducted to verify the accuracy of the proposed method.
更多
查看译文
关键词
Transient stability,equal area criterion,virtual synchronous generators,iterative approximation,high-order systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要