An Energy-Efficient Ensemble Approach for Mitigating Data Incompleteness in IoT Applications

arxiv(2024)

引用 0|浏览1
暂无评分
摘要
Machine Learning (ML) is becoming increasingly important for IoT-based applications. However, the dynamic and ad-hoc nature of many IoT ecosystems poses unique challenges to the efficacy of ML algorithms. One such challenge is data incompleteness, which is manifested as missing sensor readings. Many factors, including sensor failures and/or network disruption, can cause data incompleteness. Furthermore, most IoT systems are severely power-constrained. It is important that we build IoT-based ML systems that are robust against data incompleteness while simultaneously being energy efficient. This paper presents an empirical study of SECOE - a recent technique for alleviating data incompleteness in IoT - with respect to its energy bottlenecks. Towards addressing the energy bottlenecks of SECOE, we propose ENAMLE - a proactive, energy-aware technique for mitigating the impact of concurrent missing data. ENAMLE is unique in the sense that it builds an energy-aware ensemble of sub-models, each trained with a subset of sensors chosen carefully based on their correlations. Furthermore, at inference time, ENAMLE adaptively alters the number of the ensemble of models based on the amount of missing data rate and the energy-accuracy trade-off. ENAMLE's design includes several novel mechanisms for minimizing energy consumption while maintaining accuracy. We present extensive experimental studies on two distinct datasets that demonstrate the energy efficiency of ENAMLE and its ability to alleviate sensor failures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要