Calcium-induced upregulation of energy metabolism heats neurons during neural activity

Biochemical and Biophysical Research Communications(2024)

引用 0|浏览3
暂无评分
摘要
Cellular temperature affects every biochemical reaction, underscoring its critical role in cellular functions. In neurons, temperature not only modulates neurotransmission but is also a key determinant of neurodegenerative diseases. Considering that the brain consumes a disproportionately high amount of energy relative to its weight, neural circuits likely generate a lot of heat, which can increase cytosolic temperature. However, the changes in temperature within neurons and the mechanisms of heat generation during neural excitation remain unclear. In this study, we achieved simultaneous imaging of Ca2+ and temperature using the genetically encoded indicators, B-GECO and B-gTEMP. We then compared the spatiotemporal distributions of Ca2+ responses and temperature. Following neural excitation induced by veratridine, an activator of the voltage-gated Na+ channel, we observed an approximately 2 °C increase in cytosolic temperature occurring 30 sec after the Ca2+ response. The temperature elevation was observed in the non-nuclear region, while Ca2+ increased throughout the cell body. Moreover, this temperature increase was suppressed under Ca2+-free conditions and by inhibitors of ATP synthesis. These results indicate that Ca2+-induced upregulation of energy metabolism serves as the heat source during neural excitation.
更多
查看译文
关键词
Thermogenesis,Temperature imaging,ATP synthesis,Energy consumption,Mitochondria,Glycolysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要