Neuroligin1 in excitatory synapses contributes to long-term cognitive impairments after repeated neonatal sevoflurane exposures

Hui Zhang, Yingqiao Niu, Peng Yuan,Wenbo Liu,Wei Zhu,Jie Sun

Experimental Neurology(2024)

引用 0|浏览0
暂无评分
摘要
Background Repeated sevoflurane exposures in neonatal rats may lead to neuronal apoptosis affecting long-term cognitive function, the mechanism is unknown. Neuroligin1 (NL1) is essential for normal excitatory transmission and long-term synaptic plasticity in the hippocampus of intact animals. Herein, we explore the role of NL1 in hippocampal excitatory synapses on long-term cognitive impairments induced by repeated sevoflurane exposures in neonatal rats. Methods From postnatal day six (P6) to P8, neonatal rats were exposed to 30% oxygen or 3% sevoflurane +30% oxygen for 2 h daily. Rats from each litter were randomly assigned to five groups: control group (Con), native control adeno-associated virus (NC-AAV) group (Con + NC-AAV), sevoflurane group (Sev), sevoflurane + recombinant RNAi adeno-associated virus targeting NL1 downregulation (NL1−-AAV) group (Sev + NL1−-AAV) and control + recombinant RNAi adeno-associated virus targeting NL1 upregulation (NL1+-AAV) group (Con + NL1+-AAV). Animals were injected with NC-AAV or NL1-AAV into the bilateral hippocampal CA1 area and caged on P21. From P35 to P40, behavioral tests including open field (OF), novel object recognition (NOR), and fear conditioning (FC) tests were performed to assess cognitive function in adolescent rats. In another experiment, rat brains were harvested for immunofluorescence staining, western blotting, co-immunoprecipitation, and real-time polymerase chain reaction (PCR). Results We found that the mRNA and protein levels of NL1 were substantially higher in the Sev group than in the Con group. Immunofluorescence showed that NL1 and PSD95 were highly colocalized in hippocampal CA1 area and vesicular GABA transporter (vGAT) around neurons decreased after repeated sevoflurane exposures. Co-immunoprecipitation showed that the amount of PSD95 with NL1 antibody was significantly increased in the Sev group compared to the Con group. These rats had a poorer performance in the NOR and FC tests than control rats when they were adolescents. These results were reversed by NL1−-AAV injection into the CA1 area. NL1+-AAV group was similar to the Sev group. Conclusion We have demonstrated that repeated neonatal sevoflurane exposures decreased inhibitory synaptic inputs (labelled by vGAT) around neurons, which may influence the upregulation of NL1 in hippocampal excitatory synapses and enhanced NL1/PSD95 interaction, ultimately leading to long-term cognitive impairments in adolescent rats. Injecting NL1−-AAV reversed this damage. These results suggested that NL1 in excitatory synapses contributes to long-term cognitive impairments after repeated neonatal sevoflurane exposures.
更多
查看译文
关键词
Neuroligin 1,Synapses,Sevoflurane,Neonatal,Cognitive dysfunction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要