Myocardin reverses insulin resistance and ameliorates cardiomyopathy by increasing IRS-1 expression in a murine model of lipodystrophy caused by adipose deficiency of vacuolar H+-ATPase V0d1 subunit

Wenlin Yuan,Hui Lin, Yuan Sun,Lihuan Liu, Meijuan Yan, Yujuan Song, Xiaofan Zhang, Xiangling Lu, Yipei Xu, Qiyue He,Kunfu Ouyang,Chenglin Zhang, Yong Pan,Yu Huang,Ying Li,Xifeng Lu,Jie Liu

THERANOSTICS(2024)

引用 0|浏览7
暂无评分
摘要
Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded byAtp6v0d1, as a master regulator of adipogenesis, and adipose -specific deletion of Atp6v0d1 (Atp6v0d1(AKO)) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1(AKO) mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1(AKO) mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes -related cardiomyopathy. The Atp6v0d1(AKO) mice developed cardiac insulin resistance evidenced by decreased IRS -1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1(AKO) mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS -1 transcription through the CArG-like element in IRS -1 promoter. Reducing IRS -1 expression with RNAi increased FoxO1 expression, while increasing IRS -1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1(AKO) cardiomyocytes increased IRS -1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1(AKO) hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet -induced diabetic cardiomyopathy and palmitic acid -treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1(AKO) mice. Conclusion: Atp6v0d1(AKO) mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction -related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes -related cardiomyopathy.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要