Effect of deep learning-based reconstruction on high-resolution three-dimensional T2-weighted fast asymmetric spin-echo imaging in the preoperative evaluation of cerebellopontine angle tumors

Neuroradiology(2024)

引用 0|浏览0
暂无评分
摘要
We aimed to evaluate the effect of deep learning-based reconstruction (DLR) on high-spatial-resolution three-dimensional T2-weighted fast asymmetric spin-echo (HR-3D T2-FASE) imaging in the preoperative evaluation of cerebellopontine angle (CPA) tumors. This study included 13 consecutive patients who underwent preoperative HR-3D T2-FASE imaging using a 3 T MRI scanner. The reconstruction voxel size of HR-3D T2-FASE imaging was 0.23 × 0.23 × 0.5 mm. The contrast-to-noise ratios (CNRs) of the structures were compared between HR-3D T2-FASE images with and without DLR. The observers’ preferences based on four categories on the tumor side on HR-3D T2-FASE images were evaluated. The facial nerve in relation to the tumor on HR-3D T2-FASE images was assessed with reference to intraoperative findings. The mean CNR between the tumor and trigeminal nerve and between the cerebrospinal fluid and trigeminal nerve was significantly higher for DLR images than non-DLR-based images (14.3 ± 8.9 vs. 12.0 ± 7.6, and 66.4 ± 12.0 vs. 53.9 ± 8.5, P < 0.001, respectively). The observer’s preference for the depiction and delineation of the tumor, cranial nerves, vessels, and location relation on DLR HR-3D T2FASE images was superior to that on non-DLR HR-3D T2FASE images in 7 (54
更多
查看译文
关键词
Cerebellopontine angle tumors,Contrast-to-noise ratios,Deep learning-based reconstruction,Tumor nerve
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要