Calcium Alginate-Sago Starch Particles for Sustained Drug Release: Preparation and In Vitro Characterization

Gourav Kumar Indu, Anindya Kishore Maiti,Amit Kumar Nayak,Md Saquib Hasnain

STARCH-STARKE(2024)

引用 0|浏览1
暂无评分
摘要
In the current work, the efficacy of sago starch as potential biopolymer-blends with sodium alginate in the designing of sustained drug-releasing particles for oral delivery is investigated, where calcium alginate-sago starch particles are prepared via ionic gelation process employing calcium chloride as ionic cross-linker. These particles showed the aceclofenac loading of 16.94 +/- 0.94-18.92 +/- 1.17%, aceclofenac encapsulation efficiency of 84.72 +/- 1.94-94.59 +/- 3.53%, and average particle-size of 1.11 +/- 0.09-1.32 +/- 0.11 mm. FESEM analysis indicated spherical-shaped particles with rough surfaces. FTIR and P-XRD analyses demonstrated absence of any kinds of interactions in-between drug-polymers within particles and the encapsulated aceclofenac present within these polymeric particles is in the amorphous state. All these formulated polymeric particles demonstrated sustained in vitro aceclofenac releasing profile over 12 h and pH-responsive performance of in vitro swelling. These kinds of sustained drug-releasing sago starch-based particles can be advantageous to facilitate reduction of dosing interval and improved oral bioavailability with enhanced patient compliance. Calcium alginate-sago starch particles are prepared via an ionic gelation process. These particles showed drug encapsulation efficiency of 84.72 +/- 1.94% to 94.59 +/- 3.53% and sustained In Vitro aceclofenac releasing profile over 12 h. These aceclofenac-loaded particles were characterized by FESEM, FTIR, and P-XRD. image
更多
查看译文
关键词
alginate,drug delivery,ionic cross-linking,starch
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要