Enhancing the efficient degradation of BPS using the BPNS-CdS composite catalyst under visible light

Environmental Research(2024)

引用 0|浏览0
暂无评分
摘要
Black phosphorus nanosheets (BPNS), a novel two-dimensional nanomaterial, find extensive applications in the field of photocatalysis. With the prohibition of bisphenol A (BPA), the utilization of bisphenol S (BPS), which is more resistant to degradation than BPA, has been steadily increasing. In this study, few-layer BPNS was prepared using an improved liquid-phase exfoliation method, showcasing its commendable specific surface area and notable adsorption capacity. Subsequently, a new type of nanocomposite material, BPNS-Cadmium sulfide (CdS), was hydrothermal synthesized involving BPNS and CdS. We conducted comparative assessments of BPNS, CdS, and their composite materials to identify the most efficient catalysts. Ultimately, we found that the composite material BPNS-CdS exhibited the highest capability for degrading BPS in an alkaline environment, achieving an impressive degradation rate of 86.9%. Notably, the degradation rate remained higher in an acidic environment compared to a neutral one. Through Electron Spin Resoance (ESR) experiments, it is revealed that BPNS-CdS, when exposed to visible light, generates •O2−, •OH, and h+ as confirmed. Additionally, we tested and validated the carrier separation and migration abilities of BPNS-CdS while also calculating the band gap for each material. Building upon these results, a possible photocatalysis mechanism experiment was proposed. Finally, the degradation products were analyzed using High-Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS) and put forth a plausible pathway for the BPS degradation, and it was found that 4-Phenolsulfonic acid, Ethyl protocatechuate and Isophthalic acid are the main intermediates of BPS. This study contributes to a deeper understanding of the synergy between non-metallic catalysts like BPNS and metal catalysts like CdS. It also offers new insights into the degradation mechanisms and pathways for BPS.
更多
查看译文
关键词
BPNS-CdS,BPS,Photocatalysis mechanism,Degradation pathways
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要