De novo transcriptomic analysis of Doum Palm (Hyphaene compressa) revealed an insight into its potential drought tolerance

Allen Johnny Borlay,Cecilia Mbithe Mweu,Steven Ger Nyanjom, Kevin Mbogo Omolo, Labode Hospice Stevenson Naitchede

PLOS ONE(2024)

引用 0|浏览0
暂无评分
摘要
Background Doum palms (Hyphaene compressa) perform a crucial starring role in the lives of Kenya's arid and semi-arid people for empowerment and sustenance. Despite the crop's potential for economic gain, there is a lack of genetic resources and detailed information about its domestication at the molecular level. Given the doum palm's vast potential as a widely distributed plant in semi-arid and arid climates and a source of many applications, coupled with the current changing climate scenario, it is essential to understand the molecular processes that provide drought resistance to this plant. Results Assembly of the first transcriptome of doum palms subjected to water stress generated about 39.97 Gb of RNA-Seq data. The assembled transcriptome revealed 193,167 unigenes with an average length of 1655 bp, with 128,708 (66.63%) successfully annotated in seven public databases. Unigenes exhibited significant differentially expressed genes (DEGs) in well-watered and stressed-treated plants, with 45071 and 42457 accounting for up-regulated and down-regulated DEGs, respectively. GO term, KEGG, and KOG analysis showed that DEGs were functionally enriched cellular processes, metabolic processes, cellular and catalytic activity, metabolism, genetic information processing, signal transduction mechanisms, and posttranslational modification pathways. Transcription factors (TF), such as the MYB, WRKY, NAC family, FAR1, B3, bHLH, and bZIP, were the prominent TF families identified as doum palm DEGs encoding drought stress tolerance. Conclusions This study provides a complete understanding of DEGs involved in drought stress at the transcriptome level in doum palms. This research is, therefore, the foundation for the characterization of potential genes, leading to a clear understanding of its drought stress responses and providing resources for improved genetic modification.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要