Data from Dual-Targeting Nanoparticles for <i>In Vivo</i> Delivery of Suicide Genes to Chemotherapy-Resistant Ovarian Cancer Cells

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Abstract

Ovarian cancer is the most lethal gynecologic cancer. Claudin-3 and -4, the receptors for Clostridium perfringens enterotoxin (CPE), are overexpressed in more than 70% of these tumors. Here, we synthesized and characterized poly(lactic-co-glycolic-acid) (PLGA) nanoparticles (NPs) modified with the carboxy-terminal–binding domain of CPE (c-CPE-NP) for the delivery of suicide gene therapy to chemotherapy-resistant ovarian cancer cells. As a therapeutic payload, we generated a plasmid encoding for the diphtheria toxin subunit-A (DT-A) under the transcriptional control of the p16 promoter, a gene highly differentially expressed in ovarian cancer cells. Flow cytometry and immunofluorescence demonstrated that c-CPE-NPs encapsulating the cytomegalovirus (CMV) GFP plasmid (CMV GFP c-CPE-NP) were significantly more efficient than control NPs modified with a scrambled peptide (CMV GFP scr-NP) in transfecting primary chemotherapy-resistant ovarian tumor cell lines in vitro (P = 0.03). Importantly, c-CPE-NPs encapsulating the p16 DT-A vector (p16 DT-A c-CPE-NP) were significantly more effective than control p16 DT-A scr-NP in inducing ovarian cancer cell death in vitro (% cytotoxicity: mean ± SD = 32.9 ± 0.15 and 7.45 ± 7.93, respectively, P = 0.03). In vivo biodistribution studies demonstrated efficient transfection of tumor cells within 12 hours after intraperitoneal injection of CMV GFP c-CPE-NP in mice harboring chemotherapy-resistant ovarian cancer xenografts. Finally, multiple intraperitoneal injections of p16 DT-A c-CPE-NP resulted in a significant inhibition of tumor growth compared with control NP in chemotherapy-resistant tumor-bearing mice (P = 0.041). p16 DT-A c-CPE-NP may represent a novel dual-targeting therapeutic approach for the selective delivery of gene therapy to chemotherapy-resistant ovarian cancer cells. Mol Cancer Ther; 16(2); 323–33. ©2016 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要