Data from Opposing Effects of Androgen Deprivation and Targeted Therapy on Prostate Cancer Prevention

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Abstract

Prostate cancer is an ideal target for chemoprevention. To date, chemoprevention clinical trials with 5α-reductase inhibitors have yielded encouraging yet ultimately confounding results. Using a preclinical mouse model of high-grade prostatic intraepithelial neoplasia (HG-PIN) induced by PTEN loss, we observed unprecedented deteriorating effects of androgen deprivation, in which surgical castration or MDV3100 treatment accelerated disease progression of the otherwise stable HG-PIN to invasive castration-resistant prostate cancer (CRPC). As an alternative, targeting the phosphoinositide 3-kinase (PI3K) signaling pathway via either genetic ablation of genes encoding PI3K components or pharmacologic inhibition of the PI3K pathway reversed the PTEN loss–induced HG-PIN phenotype. Finally, concurrent inhibition of the PI3K and mitogen-activated protein kinase (MAPK) pathways was effective in blocking the growth of PTEN-null CRPC. Together, these data have revealed the potential adverse effects of antiandrogen chemoprevention in certain genetic contexts (such as PTEN loss) while showing the promise of targeted therapy in the clinical management of this complex and prevalent disease.

Significance: Chemoprevention with antiandrogen therapies is attractive for prostate cancer, given its prevalence and established hormonally mediated pathogenesis. However, because PTEN loss has been found in 9% to 45% of HG-PIN in the clinic, the current findings suggest that patients with PTEN-deficient prostate tumors might be better treated with PI3K-targeted therapies. Cancer Discov; 3(1); 44–51. ©2012 AACR.

This article is highlighted in the In This Issue feature, p. 1

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要