Data from Inhibition of ATR-Dependent Signaling by Protoapigenone and Its Derivative Sensitizes Cancer Cells to Interstrand Cross-link–Generating Agents <i>In Vitro</i> and <i>In Vivo</i>

crossref(2023)

引用 0|浏览0
暂无评分
摘要
Abstract

DNA damage caused during cancer treatment can rapidly activate the ataxia telangiectasia-mutated (ATM) and ATM and Rad3-related (ATR)-dependent phosphorylation of Chk2 and Chk1 kinases, which are hallmarks of the DNA damage response (DDR). Pharmacologic inhibition of ATR causes a synthetic lethal effect on ATM- or p53-defective cancers, suggesting that such inhibition is an effective way to improve the sensitivity of cancers to DNA-damaging agents. Here, both the natural compound protoapigenone (WYC02) and its synthetic derivative WYC0209 exhibited cytotoxic effects on various cancer cell lines. WYC02 causes chromosomal aberration in the mitotic spreads of Chinese hamster ovary cells. Interestingly, cancer cells did not exhibit typical DDR markers upon exposure to WYC02 and WYC0209 (WYCs). Further investigation into the molecular mechanisms of WYCs function revealed that they have a potential ability to inhibit DDR, particularly on activation of Chk1 and Fanconi anemia group D2 protein (FANCD2), but not Chk2. In this way, WYCs inhibited ATR-mediated DNA damage checkpoint and repair. Furthermore, when combined with the DNA cross-linking agent cisplatin, treatment with WYCs resulted in increased tumor sensitivity to interstrand cross-link–generating agents both in vitro and in vivo. Our results therefore especially implicate WYCs in enhancing tumor chemosensitivity when the ATR checkpoint is constitutively active in states of oncogene-driven replicative stress or tolerance to DNA-interfering agents. Mol Cancer Ther; 11(7); 1443–53. ©2012 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要