Data from Superior Properties of Fc-comprising scTRAIL Fusion Proteins

Meike Hutt, Lisa Marquardt,Oliver Seifert,Martin Siegemund, Ines Müller,Dagmar Kulms, Klaus Pfizenmaier,Roland E. Kontermann

crossref(2023)

引用 0|浏览2
暂无评分
摘要
Abstract

The TNF-related apoptosis-inducing ligand (TRAIL) has been considered as a promising molecule for cancer treatment. However, clinical studies with soluble TRAIL failed to show therapeutic activity, which resulted in subsequent development of more potent TRAIL-based therapeutics. In this study, we applied defined oligomerization and tumor targeting as strategies to further improve the activity of a single-chain version of TRAIL (scTRAIL). We compared three different formats of EGF receptor (EGFR)-targeting dimeric scTRAIL fusion proteins [Diabody (Db)-scTRAIL, scFv-IgE heavy chain domain 2 (EHD2)-scTRAIL, scFv-Fc-scTRAIL] as well as two nontargeted dimeric scTRAIL molecules (EHD2-scTRAIL, Fc-scTRAIL) to reveal the influence of targeting and protein format on antitumor activity. All EGFR-targeted dimeric scTRAIL molecules showed similar binding properties and comparable cell death induction in vitro, exceeding the activity of the respective nontargeted dimeric format and monomeric scTRAIL. Superior properties were observed for the Fc fusion proteins with respect to production and in vivo half-life. In vivo studies using a Colo205 xenograft model revealed potent antitumor activity of all EGFR-targeting formats and Fc-scTRAIL and furthermore highlighted the higher efficacy of fusion proteins comprising an Fc part. Despite enhanced in vitro cell death induction of targeted scTRAIL molecules, however, comparable antitumor activities were found for the EGFR-targeting scFv-Fc-scTRAIL and the nontargeting Fc-scTRAIL in vivo. Mol Cancer Ther; 16(12); 2792–802. ©2017 AACR.

更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要