Specific transcription factors Ascl1 and Lhx6 attenuate diabetic neuropathic pain by modulating spinal neuroinflammation and microglial activation in mice

BIOMEDICINE & PHARMACOTHERAPY(2024)

引用 0|浏览0
暂无评分
摘要
Gamma-aminobutyric acid (GABA) neuronal system-related transcription factors (TFs) play a critical role in GABA production, and GABA modulates diabetic neuropathic pain (DNP). The present study investigated the therapeutic effects of intrathecal delivery of two TFs achaete-scute homolog 1 (Ascl1) and LIM homeobox protein 6 (Lhx6) in a mouse model of DNP and elucidated their underlying mechanisms. GABA-related specific TFs, including Ascl1, Lhx6, distal-less homeobox 1, distal-less homeobox 5, the Nkx2.1 homeobox gene, and the Nkx2.2 homeobox gene, were investigated under normal and diabetic conditions. Among these, the expression of Ascl1 and Lhx6 was significantly downregulated in mice with diabetes. Therefore, a single intrathecal injection of combined lenti-Ascl1/Lhx6 was performed. Intrathecal delivery of lenti-Ascl1/Lhx6 significantly relieved mechanical allodynia and heat hyperalgesia in mice with DNP. Ascl1/Lhx6 delivery also reduced microglial activation, decreased the levels of pro-inflammatory cytokines including tumor necrosis factor-alpha and interleukin (IL)1 beta, increased the levels of anti-inflammatory cytokines including IL-4, IL-10, and IL-13, and reduced the activation of p38, c-Jun N-terminal kinase, and NF-kappa B in the spinal cord of mice with DNP, thereby reducing DNP. The results of this study suggest that intrathecal Ascl1/Lhx6 delivery attenuates DNP via upregulating spinal GABA neuronal function and inducing anti-inflammatory effects.
更多
查看译文
关键词
Diabetes,GABAergic,Microglial activation,Neuropathic pain,Neuroinflammation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要