Nondestructive Determination of Epicarp Hardness of Passion Fruit Using Near-Infrared Spectroscopy during Storage

FOODS(2024)

引用 0|浏览0
暂无评分
摘要
The hardness of passion fruit is a critical feature to consider when determining maturity during post-harvest storage. The capacity of near-infrared diffuse reflectance spectroscopy (NIRS) for non-destructive detection of outer and inner hardness of passion fruit epicarp was investigated in this work. The passion fruits' spectra were obtained using a near-infrared spectrometer with a wavelength range of 10,000-4000 cm-1. The hardness of passion fruit's outer epicarp (F1) and inner epicarp (F2) was then measured using a texture analyzer. Moving average (MA) and mean-centering (MC) techniques were used to preprocess the collected spectral data. Competitive adaptive reweighted sampling (CARS), successive projection algorithm (SPA), and uninformative variable elimination (UVE) were used to pick feature wavelengths. Grid-search-optimized random forest (Grids-RF) models and genetic-algorithm-optimized support vector regression (GA-SVR) models were created as part of the modeling process. After MC preprocessing and CARS selection, MC-CARS-Grids-RF model with 7 feature wavelengths had the greatest prediction ability for F1. The mean square error of prediction set (RMSEP) was 0.166 gN. Similarly, following MA preprocessing, the MA-Grids-RF model displayed the greatest predictive performance for F2, with an RMSEP of 0.101 gN. When compared to models produced using the original spectra, the R2P for models formed after preprocessing and wavelength selection improved. The findings showed that near-infrared spectroscopy may predict the hardness of passion fruit epicarp, which can be used to identify quality during post-harvest storage.
更多
查看译文
关键词
passion fruit epicarp,near-infrared spectroscopy,hardness,Grids-RF model,GA-SVR model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要