Fire-Retardant Flexible Foamed Polyurethane (PU)-Based Composites: Armed and Charmed Ground Tire Rubber (GTR) Particles

POLYMERS(2024)

引用 0|浏览4
暂无评分
摘要
Inadequate fire resistance of polymers raises questions about their advanced applications. Flexible polyurethane (PU) foams have myriad applications but inherently suffer from very high flammability. Because of the dependency of the ultimate properties (mechanical and damping performance) of PU foams on their cellular structure, reinforcement of PU with additives brings about further concerns. Though they are highly flammable and known for their environmental consequences, rubber wastes are desired from a circularity standpoint, which can also improve the mechanical properties of PU foams. In this work, melamine cyanurate (MC), melamine polyphosphate (MPP), and ammonium polyphosphate (APP) are used as well-known flame retardants (FRs) to develop highly fire-retardant ground tire rubber (GTR) particles for flexible PU foams. Analysis of the burning behavior of the resulting PU/GTR composites revealed that the armed GTR particles endowed PU with reduced flammability expressed by over 30% increase in limiting oxygen index, 50% drop in peak heat release rate, as well as reduced smoke generation. The Flame Retardancy Index (FRI) was used to classify and label PU/GTR composites such that the amount of GTR was found to be more important than that of FR type. The wide range of FRI (0.94-7.56), taking Poor to Good performance labels, was indicative of the sensitivity of flame retardancy to the hybridization of FR with GTR components, a feature of practicality. The results are promising for fire protection requirements in buildings; however, the flammability reduction was achieved at the expense of mechanical and thermal insulation performance.
更多
查看译文
关键词
polyurethane foam,composites,ground tire rubber,filler modification,flame retardancy,flammability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要