No thick carbon dioxide atmosphere on the rocky exoplanet TRAPPIST-1 c

crossref(2024)

引用 0|浏览6
暂无评分
摘要
Seven rocky planets orbit the nearby dwarf star TRAPPIST-1, providing a unique opportunity to search for atmospheres on small planets outside the Solar System. Thanks to the recent launch of the James Webb Space Telescope (JWST), possible atmospheric constituents such as carbon dioxide (CO2) are now detectable. Recent JWST observations of the innermost planet TRAPPIST-1 b showed that it is most probably a bare rock without any CO2 in its atmosphere. Here we report the detection of thermal emission from the dayside of TRAPPIST-1 c with the Mid-Infrared Instrument (MIRI) on JWST at 15 µm. We measure a planet-to-star flux ratio of 421 +/- 94 parts per million (ppm), which corresponds to an inferred dayside brightness temperature of 380 +/- 31 K. This high dayside temperature disfavours a thick, CO2-rich atmosphere on the planet. The data rule out cloud-free O2/CO2 mixtures with surface pressures ranging from 10 bar (with 10 ppm CO2) to 0.1 bar (pure CO2). A Venus-analogue atmosphere with sulfuric acid clouds is also disfavoured at 2.6 sigma confidence. Thinner atmospheres or bare-rock surfaces are consistent with our measured planet-to-star flux ratio.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要