Formation mechanisms of persistent extreme precipitation events over the eastern periphery of the Tibetan Plateau: Synoptic conditions, moisture transport and the effect of steep terrain

Atmospheric Research(2024)

引用 0|浏览1
暂无评分
摘要
The eastern periphery of the Tibetan Plateau (EPTP) is prone to frequent and severe Persistent Extreme precipitation (PEP) events in summer. Given the complexity of weather systems and the intricate nature of terrain over this region, the generation and development mechanisms of the PEP in the EPTP remain to be determined. In this study, the formation and persistence mechanisms are further explored from the perspective of the general features of large-scale circulations, moisture source diagnosis and the influence of steep topography by using a thermal-dynamical diagnosis method, a mesoscale numerical simulation and a Lagrangian identification of the main moisture sources. The results show that during PEP events, the corresponding atmospheric circulation systems are characterized by an anomalous Rossby wave train at middle levels, an intensified westerly jet, an eastward extension of the South Asian high and a westward extension of the western Pacific subtropical high, all of which are possible to facilitate the development of potential instability and anticyclonic convergence of water vapor transport. The evaporative moisture sources from the Southeastern Asia (SEA), Bay of Bengal (BOB), and Southern China Sea (SCS) are remarkably enhanced during PEP events, with a contribution of 56.44%, which is 28.5% higher than the climatic mean. The further sensitive experiment indicates that the steep terrain could enhance the continuous transport of positive potential vorticity and the downward propagation of upper-level isentropic potential vorticity disturbances, thereby playing an essential role in the triggering and development of PEP events.
更多
查看译文
关键词
Persistent extreme precipitation,Tibetan Plateau,Moisture source,Atmospheric circulation anomalies,Steep terrain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要