Molecules and microbes: monitoring peatland health below the surface

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Peatlands are organic matter rich (with over 60% organic matter) ecosystems that act as ‘carbon sinks’, storing many times the carbon stored by Earth’s forests. Peatlands act as sponges storing excess water from rain events and releasing it slowly, a mechanism that not only mitigates floods but also filters drinking waters. However, peatlands can only conduct these vital services when healthy and functioning, with a near surface water table and anoxic acidic conditions below the surface. Unfortunately, 80% of UK peatlands have been assessed as damaged mainly via drainage for repurposing the land for other uses. Rewetting peatlands by installing dams is one of the most common methods to restore these damaged bogs. While there is a large amount of evidence that rewetting restores the water table, questions remain whether rewetting successfully restores peatlands to their full health. To answer this question, we need to know what is happening below the surface and examine the roles of key players in peat formation and carbon cycling, namely the microbes and the carbon-containing molecules. It is not clear which of these players is more important, or how they depend on each other. To address this question, we are using the latest technologies (DNA/RNA sequencing, NMR spectroscopy and FT-ICR mass spectrometry) to uncover who they are, how they interact and how they are impacted by drainage and rewetting. The task is not easy as peat is an uncharacterised complex mixture on a molecular and microbial level and the key players could be found in different phases (solid or liquid). In this presentation, I will provide a brief overview of what insights the technologies we are using provide for below the surface characterisation of UK peatlands.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要