Implications for the strength of the Earth’s middle crust from novel experiments on natural fine-grained granitoid rocks 

Natalia Nevskaya,Alfons Berger,Holger Stünitz, Weijia Zhan,Oliver Plümper, Marcus Ohl,Marco Herwegh

crossref(2024)

引用 0|浏览0
暂无评分
摘要
To comprehend the rheology of the Earth's crust and the relevant rock properties, one key approach is to deform rocks and minerals at elevated pressures and temperatures and then extrapolate the measured stress and strain rate values to natural conditions using constitutive equations. Laboratory experiments are mostly conducted on monomineralic rocks, with quartz being considered as the weakest constituent of the middle continental crust. However, field observations suggest that this is an oversimplification, and polymineralic fault rocks may be weaker than monomineralic quartz rocks. This study presents the first experiments on fine-grained, solid, natural rock samples, containing their natural homogeneities and inhomogeneities, demonstrating that granitoid rocks may be weaker than quartz at mid-crustal conditions. It also highlights the importance of pre-existing faults and polymineralic fine-grained zones for strain localisation and proposes values for extrapolation to natural conditions and their use in numerical models of the deformation of the granitoid crust.Cylindrical granitoid ultramylonite samples, composed of qtz + ab + K-fsp + bt + ep, with grain sizes of 125-15 μm are deformed in a Grigg’s type apparatus at T=650°C, confining P=1.2 GPa, strain rates=10-3 to 10-5s-1, and 0.2 wt% H2O added. Mechanical data are combined with light microscope, SEM, TEM, and quantitative image analysis to connect microstructures with stress and strain evolution. We show that polymineralic granitoid rocks deform through other mechanisms than monomineralic quartz aggregates at pressure and temperature conditions characteristic for the middle crust: Ultra-fine grain size reduction down to <50nm is developed by nucleation and growth of new grains in a polymineralic mixture. Grain size remains small because of pinning processes. We therefore refer to the deformation mechanism as pinning-controlled dissolution-precipitation creep (P-DPC).Furthermore, we establish a new constitutive equation for this P-DPC, based on an exponential diffusion creep flow law, to model our experiments and tackle the extrapolation to various natural conditions. This flow law is supported by the microstructural evidence for the deformation mechanisms. Extrapolations show that the shear zones of the granitoid middle crust may be magnitudes weaker than extrapolated so far, and deformation may occur at magnitudes faster rates. The brittle to viscous transition may be shifted to shallower levels. This may have implications for the seismogenic zone and/or stress fields below geothermal reservoirs. Most importantly, we show the necessity to take polymineralic rocks into consideration for various numerical model applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要