The stochastic Ravine accelerated gradient method with general extrapolation coefficients

arxiv(2024)

引用 0|浏览0
暂无评分
摘要
In a real Hilbert space domain setting, we study the convergence properties of the stochastic Ravine accelerated gradient method for convex differentiable optimization. We consider the general form of this algorithm where the extrapolation coefficients can vary with each iteration, and where the evaluation of the gradient is subject to random errors. This general treatment models a breadth of practical algorithms and numerical implementations. We show that, under a proper tuning of the extrapolation parameters, and when the error variance associated with the gradient evaluations or the step-size sequences vanish sufficiently fast, the Ravine method provides fast convergence of the values both in expectation and almost surely. We also improve the convergence rates from O(.) to o(.). Moreover, we show almost sure summability property of the gradients, which implies the fast convergence of the gradients towards zero. This property reflects the fact that the high-resolution ODE of the Ravine method includes a Hessian-driven damping term. When the space is also separable, our analysis allows also to establish almost sure weak convergence of the sequence of iterates provided by the algorithm. We finally specialize the analysis to consider different parameter choices, including vanishing and constant (heavy ball method with friction) damping parameter, and present a comprehensive landscape of the tradeoffs in speed and accuracy associated with these parameter choices and statistical properties on the sequence of errors in the gradient computations. We provide a thorough discussion of the similarities and differences with the Nesterov accelerated gradient which satisfies similar asymptotic convergence rates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要