Dissolution enables dolomite growth near ambient conditions

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Crystals grow in supersaturated solutions. A mysterious counterexample is dolomite CaMg(CO3)2, a geologically-abundant sedimentary mineral that does not readily grow at ambient conditions, not even under highly supersaturated solutions. Using atomistic simulations, we show that dolomite initially precipitates a cation-disordered surface, where high surface strains inhibit further crystal growth. However, mild undersaturation will preferentially dissolve these disordered regions, enabling increased order upon reprecipitation. Our simulations predict that frequent cycling of a solution between supersaturation and undersaturation can accelerate dolomite growth by up to seven orders of magnitude. We validate our theory with in situ liquid cell TEM—directly observing bulk dolomite growth following pulses of dissolution. This mechanism explains why modern dolomite is primarily found in natural environments with pH or salinity fluctuations. More generally, it reveals that the growth and ripening of defect-free crystals can be facilitated by deliberate periods of mild dissolution. [Kim et al., Science: adi3690 (2023)]
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要