Assessing Radiation Effects on Chemo-Treated BT20 and 4T1 Breast Cancer, and Neuroblastoma Cell Lines: A Study of Single and Multiple-Cell Ionization via Infrared Laser Trapping

Mulugeta S. Goangul,Daniel B. Erenso,Ying Gao,Li Chen, Kwame O. Eshun, Gisela Alvarez,Horace T. Crogman

Radiation(2024)

引用 0|浏览0
暂无评分
摘要
Background: Our study aimed to assess the radiation sensitivity of BT20, a human breast tumor cell line, using the laser-trapping technique and compare it with N2a and 4T1 cells. Additionally, we investigated the impact of the antitumor compound 2-Dodecyl-6-methoxycyclohexa-2,5-diene-1,4-dione (DMDD) on radiation sensitivity. Methods and Materials: We employed laser trapping to calculate both the threshold ionization energy (TIE) and threshold radiation dose (TRD) for BT20, N2a, and 4T1 cells. We assessed the effect of DMDD on BT20 cells’ radiosensitivity and conducted comparisons across these cell lines. Results: Our findings reveal that DMDD significantly enhances the radiosensitivity of BT20 breast carcinoma cells. Moreover, we observed distinct trends in TIE and TRD across the three cell lines, with differences attributed to variations in cell size and composition. When multiple cell ionizations were considered, a notable reduction in TRD was observed, implicating factors such as the chain effect of ionizing radiation and the influence of DMDD. The study found that TIE increased with the number of cells in the trap while TRD consistently decreased across all three cell lines, suggesting comparable radiation sensitivity, and oligostilbene treatment further reduced TRD, presenting the potential for enhancing therapeutic ratios in cancer treatment. Conclusion: The antitumor compound DMDD enhances the radiosensitivity of BT20 breast carcinoma cells, highlighting its potential in cancer treatment. Furthermore, our study underscores the impact of cell size and multiple-cell ionizations on TRD. Leveraging laser trapping techniques, biocompatible nanoparticles, and advanced optical tweezers opens promising avenues for personalized and effective cancer therapy approaches.
更多
查看译文
关键词
breast cancer cells,laser trapping,cell mechanics,chemotherapy,radiation therapy,threshold ionization energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要