CoupleVAE: coupled variational autoencoders for predicting perturbational single-cell RNA sequencing data

Limin Li, Yahao Wu,Jing Liu, Songyan Liu,Yanni Xiao,Shuqin Zhang

biorxiv(2024)

引用 0|浏览1
暂无评分
摘要
With the rapid advances in single-cell sequencing technology, it is now feasible to conduct in-depth genetic analysis in individual cells. Study on the dynamics of single cells in response to perturbations is of great significance for understanding the functions and behaviours of living organisms. However, the acquisition of post-perturbation cellular states via biological experiments is frequently cost-prohibitive. Predicting the single-cell perturbation responses poses a critical challenge in the field of computational biology. In this work, we propose a novel deep learning method called coupled variational autoencoders (CoupleVAE), devised to predict the post-perturbation single-cell RNA-Seq data. CoupleVAE is composed of two coupled VAEs connected by a coupler, initially extracting latent features for both controlled and perturbed cells via two encoders, subsequently engaging in mutual translation within the latent space through two nonlinear mappings via a coupler, and ultimately generating controlled and perturbed data by two separate decoders to process the encoded and translated features. CoupleVAE facilitates a more intricate state transformation of single cells within the latent space. Experiments in three real datasets on infection, stimulation and cross-species prediction show that CoupleVAE surpasses the existing comparative models in effectively predicting single-cell RNA-seq data for perturbed cells, achieving superior accuracy. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要