From slow to fast earthquakes: laboratory insights on acoustic and mechanical fault slip behavior

Federico Pignalberi,Carolina Giorgetti,Pierre Romanet,Elisa Tinti,Chris Marone, Marco Scuderi

crossref(2024)

引用 0|浏览0
暂无评分
摘要
A critical aspect of studying earthquake mechanisms involves understanding why a single fault can exhibit various slip behaviors. Fault heterogeneity leads to different slip behaviors in different fault portions: some slip seismically, generating catastrophic earthquakes, while others slip a-seismically in a stable and silent manner. Additionally, some fault portions exhibit slow, intermittent slip that can persist for months. Unraveling the physical mechanism at the base of these different fault slip behaviors is crucial for understanding how fault portions that slip slowly interact with portions capable of producing earthquakes. In a laboratory setting, we can replicate the entire spectrum of fault slip behaviors by changing the loading stiffness of our experimental apparatus. Tuning the loading stiffness, we are able to match the critical rheological stiffness of the fault (kc) and investigate conditions around the critical point where k/kc = 1. Moreover, monitoring acoustic emissions (AEs) during laboratory earthquakes allows us to capture the rupture processes throughout the seismic cycle. To constrain the nucleation mechanisms and rupture processes of different slip behaviors, we conducted friction experiments using quartz powder (MinUSil, average grain size 10 µm) to simulate fault gouge. The experiments were carried out in a double direct shear configuration, using an array of calibrated piezoelectric sensors for continuous, high acquisition rate (6 MHz) AE recording. The experiments were conducted at a constant displacement rate of 10 µm/s. During each experiment we maintained a constant normal stress and changed three acrylic blocks of different areas to change the apparatus stiffness (k). This technique allows us to reproduce both fast (i.e., when the apparatus stiffness is lower than a critical stiffness, k更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要