Impact of HfO2 Dielectric Layer Placement in Hf0.5Zr0.5O2‐Based Ferroelectric Tunnel Junctions for Neuromorphic Applications

Advanced Materials Technologies(2024)

引用 0|浏览2
暂无评分
摘要
AbstractThe use of Hf0.5Zr0.5O2 (HZO) films within hafnia‐based ferroelectric tunnel junctions (FTJ) presents a promising avenue for next‐generation non‐volatile memory devices. HZO exhibits excellent ferroelectric properties, ultra‐thinness, low power consumption, nondestructive readout, and compatibility with silicon devices. In this study, Mo/HZO/n+ Si devices are investigated, incorporating a 1 nm HfO2 dielectric layer at the top and bottom of the HZO ferroelectric layer. Comparing the FTJ device configurations, it is observed that the metal‐ferroelectric‐dielectric‐semiconductor (MFIS) outperforms the metal‐dielectric‐ferroelectric‐semiconductor (MIFS) in terms of ferroelectricity, displaying a high 2Pr value of ≈69 µC cm−2. Additionally, MFIS exhibits lower leakage current, higher tunneling electro‐resistance ratio, and a thin dead layer during short pulse switching, as confirmed through DC double sweeping of I−V characteristics. The modified half‐bias scheme demonstrates a maximum array size of 191 for MFIS, showcasing its superior performance over MIFS. Synaptic characteristics, including potentiation, depression, paired‐pulse facilitation, spike‐rate‐dependent plasticity, and excitatory postsynaptic current, are measured using MFIS, highlighting its outstanding ferroelectric properties. As a physical reservoir, the FTJ device implements 16 states of 4 bits in reservoir computing. Finally, pattern recognition using a deep learning neural network achieves high accuracy with using the Modified National Institute of Standards and Technology dataset.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要