Hydrodynamic responses of the Caspian Sea and Black Sea to greenhouse warming in a high-resolution ocean-atmosphere coupled climate model

crossref(2024)

引用 0|浏览0
暂无评分
摘要
The Caspian Sea and Black Sea are the two earth's largest inland seas. Projections of their temperature, circulation and water balance responses to greenhouse warming remain largely uncertain. We investigated hydrodynamic changes of the two water bodies in a high-resolution CESM1 simulation, in which both the Caspian Sea and Black Sea are simulated by the ocean model (POP2). It turns out the mean surface water temperature of the two seas will increase by about 2.5°C in response to CO2 doubling in the atmosphere. Meanwhile, reduction of wind stress curl will lead to a spin-down of the main gyre circulations particularly in the Black Sea, which was also evidenced by a two-dimensional ocean model with joint effect of baroclinicity and bottom relief being considered. Our results also show that future evaporation enhancement due to surface warming will lead to a negative water balance for both seas, which is equivalent to a mean sea level trend of -0.1 m/year when CO2 concentration in the atmosphere doubles. These hydrodynamic changes are likely to exert large impacts on the aquatic ecosystems, fisheries, and human societies in the coastal areas.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要