A tale of two terrane boundaries – variable impact of terrane boundaries on rift geometry in the Great South Basin, New Zealand

Malte Froemchen,Ken McCaffrey, Tom Phillips,Mark Allen,Jeroen van Hunen

crossref(2024)

引用 0|浏览0
暂无评分
摘要
The evolution of continental rifts is influenced by the pre-rift rheology of the lithosphere and discrete lithospheric structures that segment the rift. The Great South Basin, offshore New Zealand, is a Cretaceous rift system that formed across heterogenous basement terranes which influence the rift architecture. Faults locally rotate or splay and segment along these terrane boundaries. While the impact of terrane boundaries on rift architecture is well understood, the temporal evolution of these rotated faults is poorly constrained. Here we use 3D reflection seismic data to investigate the timing and slip rate evolution of the rotated and segmented faults along two terrane boundaries. Our results show that these have a significant but variable impact on rift evolution and architecture: Faults in the Murihiku terrane show asymmetric throw-length profiles and are rotated along the terrane boundary to the Dun Mountain-Maitai terrane, as they detach into shallow crustal fabrics. Faults in the DMM terrane show less evidence of rotation and more symmetric throw-length profiles but are segmented along the DMM and Caples terrane boundary. The curving faults of the Murihiku terrane likely formed early on but remained as isolated segments only linking up during later stages of rifting when other faults became inactive. These results show the influence of the terrane boundaries was not only active early during initial segmentation but also during the linkage of curved fault segments in the later stages of rifting. These results may help understand the temporal evolution of lithospheric and crustal inheritance on rift evolution in other regions around the world like East Africa or North China.  
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要