Transcriptomic and biochemical analysis of metabolic remodeling in Bacillus subtilis MSC4 under Benzo[a]pyrene stress

Rui Chen, Na Liu,Yuan Ren,Tangbing Cui

Chemosphere(2024)

引用 0|浏览3
暂无评分
摘要
Polyaromatic benzo[a]pyrene (B[a]P) is a toxic carcinogenic environmental pollutant, and the use of microorganisms to remediate B[a]P contamination is considered to be one of the most effective strategies. However, there is still a gap in studying the metabolic remodeling of microorganisms under B[a]P stress. In this study, our systematically investigated the effects of B[a]P on the metabolism of Bacillus subtilis MSC4 based on transcriptomic, molecular and biochemical analyses. The results showed that in response to B[a]P stress, MSC4 formed more biofilm matrix and endospores, the structure of the endospores also was changed, which led to a reduction in their resistance and made them more difficult to germinate. In addition to an increase in glycolysis activity, the activities of tricarboxylic acid cycle, pentose phosphate pathway and the electron transport chain were decreased. B[a]P stress forced MSC4 to strengthen arginine synthesis, urea cycle, and urea decomposition, meanwhile, synthesize more ribonucleotides. The activity of DNA replication, transcription activities and the expression of multiple ribosomal protein genes were reduced. Moreover, all of the reported enzymes involved in B[a]P degradation showed decreased transcript abundance, and the degradation of B[a]P caused significant up-regulation of the gene expression of the acid inducible enzyme OxdC and the synthesis of acetoin. In addition, the cytotoxicity of B[a]P to bacteria was directly displayed in four aspects: increased intracellular level of reactive oxygen species (ROS), elevated cell membrane permeability, up-regulation of the cell envelope stress-sensing two-component system LiaRS, and downregulation of siderophores biosynthesis. Finally, B[a]P also caused morphological changes in the cells, with some cells exhibiting significant deformation and concavity. These findings provide effective research directions for targeted improvement the cellular activity of B[a]P-degrading strains, and is beneficial for further application of microorganisms to remediate B[a]P -contaminated soils.
更多
查看译文
关键词
Transcriptomic,Bacillus subtilis,Metabolic remodeling,Benzo[a]pyrene,Bioremediation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要