The influence of the lithosphere on deep-origin volcanism

Lara M Kalnins, Amelia K Douglas,Benjamin E Cohen,J Godfrey Fitton, Darren F Mark

crossref(2024)

引用 0|浏览0
暂无评分
摘要
Eastern Australia and the neighbouring Tasman and Coral Seas are home to extensive age-progressive volcanism spanning from ~55 Ma in the north to ~6 Ma in the south. This volcanism forms two offshore seamount trails, the Lord Howe and the Tasmantid Chains, as well as the onshore central volcanoes and leucitites of the East Australian Chain. The three volcanic chains are an average of just 500 km apart, erupted contemporaneously from 35-6 Ma, and share a common age-distance relationship, strongly suggesting a common source, most likely a deep-origin plume. However, they have erupted through lithosphere ranging from oceanic with well-developed seafloor spreading to drowned continental fragments to mainland Australia. How do these diverse settings influence the chemical and physical properties of the resulting mafic volcanism? The East Australian Chain has more fractionated mafic samples, reflecting more complex magmatic plumbing and longer magma residence times in the thick continental lithosphere. However, the most striking result is that the trace element and isotopic ratios remain remarkably similar across the three suites, showing little evidence of crustal or lithospheric assimilation affecting the mafic magmas. 
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要