Leptochelins A-C, Cytotoxic Metallophores Produced by Geographically Dispersed Leptothoe Strains of Marine Cyanobacteria

Nicole E. Avalon,Mariana A. Reis, Christopher C. Thornburg,R. Thomas Williamson,Daniel Petras, Allegra T. Aron,George F. Neuhaus, Momen Al-Hindy, Jana Mitrevska,Leonor Ferreira,João Morais,Yasin El Abiead,Evgenia Glukhov, Kelsey L. Alexander, F. Alexandra Vulpanovici,Matthew J. Bertin, Syrena Whitner,Hyukjae Choi,Gabriella Spengler, Kirill Blinov, Ameen M. Almohammadi,Lamiaa A. Shaala,William R. Kew, Ljiljana Paša-Tolić,Diaa T. A. Youssef,Pieter C. Dorrestein,Vitor Vasconcelos,Lena Gerwick,Kerry L. McPhail,William H. Gerwick

crossref(2024)

引用 0|浏览3
暂无评分
摘要
Metals are important co-factors in the metabolic processes of cyanobacteria including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. The leptochelins are halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Post-column infusion of metals using an LC-MS metabolomics workflow performed with leptochelin A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, but with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play a key ecological role in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要