Assessment of global high-resolution water storage simulations from the LISFLOOD hydrological model

crossref(2024)

引用 0|浏览2
暂无评分
摘要
Simulated terrestrial water storage (TWS) data from global hydrological models are indispensable for various geodetic applications, e.g., for simulating Earth orientation parameters, deriving time series of deformations of the Earth’s surface needed for the realization of global reference systems, or de-aliasing purposes of GRACE/-FO gravity products. So far, the Land Surface Discharge Model (LSDM) has been routinely used for such tasks at the GFZ. However, the current standard experiment of LSDM is already several years old, and many limitations are known, in particular a limited spatial resolution of 0.5°, which limits the accuracy of crustal deformation predictions close to rivers and lakes. In this contribution, we evaluate the suitability of LISFLOOD (https://ec-jrc.github.io/lisflood/), an open source, high-resolution hydrological rainfall-runoff-routing model, for geodetic purposes. We compare the performance of various global LISFLOOD model runs for the time period 2000 – 2022 against the current LSDM configuration. In addition to two LISFLOOD model generations, which differ in their spatial resolution (0.1° and 0.05°) and their input land surface parameter data set, we also explore a number of high-resolution (0.05°) model runs with respect to the influence of the soil depth on simulated TWS. Model results are validated against mass anomalies from the satellite gravimetry missions GRACE and GRACE-FO on different spatial and temporal scales. Furthermore, to demonstrate the benefit of the higher spatial resolution of LISFLOOD, we utilize data from selected ground based GNSS stations to validate the models’ performance regarding mass-induced loading. We find that LISFLOOD significantly outperforms LSDM in many regions, especially on interannual time scales, in terms of various validation metrics (i.e., correlation, root mean squared deviation, and explained variance). Analyzing the different LISFLOOD runs reveals advantages of the new (0.05°) over the old (0.1°) model version, and a large impact of the choice of soil depth on simulated TWS.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要