Vegetation types influence fine-scale drought impact on land surface cooling and burn patterns in the Siberian coastal tundra

Nils Rietze,Jakob Assmann, Gabriela Schapeman-Strub

crossref(2024)

引用 0|浏览0
暂无评分
摘要
In 2020, the Northeastern Siberian lowland tundra faced an extreme drought and unprecedented wildfires. The burning of carbon-rich soils in this region can release large amounts of carbon, worsening climate change and Arctic warming.  However, we know little about of how droughts impact vegetation and how this vegetation might become fuel for large fires in the typically wet landscapes of the Northeastern Siberian lowland tundra. We studied the impact of the extreme summer drought in 2020 on the tundra vegetation and the resulting burn patterns in the Indigirka lowlands using a combination of in-situ, thermal, and multispectral remote sensing data from drone and high-resolution satellite imagery. The fine-scale vegetation types revealed increased landscape-wide drought susceptibility indicated by an overall loss of land surface cooling. This suggests a shift towards an energy budget dominated by sensible heat flux, which may feed back and intensify the heatwave.  Further, we found that mostly dry vegetation types were affected by fire in the NE Siberian coastal tundra, while wetter vegetation types did not burn, leading to a fine-scale heterogeneous burn pattern. Our results indicate that the enhanced drought susceptibility of vegetation types may have led to higher fire fuel connectivity of the tundra landscape. Consequently, this may have resulted in the large burn extents observed in 2019 and 2020. Our analysis is an effort toward the prediction of fire fuel connectivity and fire management in remote Arctic areas.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要