The role of a weakening AMOC in shaping future Euro-Atlantic atmospheric circulation

crossref(2024)

引用 0|浏览1
暂无评分
摘要
Climate change simulations predict a weakening of the Atlantic Meridional Overturning Circulation (AMOC). In the North Atlantic, where the deep convection occurs, the AMOC has a particularly marked influence. Here, the AMOC decline could have significant implications for the evolution of weather patterns, resulting in societal risks for densely populated areas of Europe.  We employ the Weather Regime framework to analyse the change in the daily variability of large-scale atmospheric circulation in three coordinated experiments from the CMIP6 archive (i.e., ssp2-4.5, ssp5-8.5 and abrupt-4xCO2). We find that models that simulate a larger AMOC decline feature a net increase in NAO+ regime frequency and persistence compared to models that simulate a smaller AMOC decline. We show that this is due to the influence of a reduced warming of the subpolar North Atlantic (SPNA) on mean geopotential height, caused by the AMOC weakening. We further show that this also causes the storm track to strengthen due to an increased baroclinicity of the atmosphere in the region, with possible consequences on future extreme events. Overall, our results suggest that the evolution of the Euro-Atlantic atmospheric circulation depends on the AMOC decline. We conclude that ocean circulation is a main driver of NAO variability in projections of future climate change, in addition to previously known drivers. 
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要