Cationic Ir(III) Complexes with 4-Fluoro-4-pyrazolyl-(1,1-biphenyl)-2-carbonitrile as the Cyclometalating Ligand: Synthesis, Characterizations, and Application to Ultrahigh-Efficiency Light-Emitting Electrochemical Cells

Rong-Huei Yi, Yi-Hsun Lee,Yu-Ting Huang, Xuan-Jun Chen,Yun-Xin Wang,Dian Luo,Chin-Wei Lu,Hai-Ching Su

INORGANIC CHEMISTRY(2024)

引用 0|浏览3
暂无评分
摘要
Light-emitting electrochemical cells (LECs) promise low-cost, large-area luminescence applications with air-stabilized electrodes and a versatile fabrication that enables the use of solution processes. Nevertheless, the commercialization of LECs is still encountering many obstacles, such as low electroluminescence (EL) efficiencies of the ionic materials. In this paper, we propose five blue to yellow ionic Ir complexes possessing 4-fluoro-4 '-pyrazolyl-(1,1 '-biphenyl)-2-carbonitrile (ppfn) as a novel cyclometalating ligand and use them in LECs. In particular, the device within di[4-fluoro-4 '-pyrazolyl-(1,1 '-biphenyl)-2-carbonitrile]-4,4 '-di-tert-butyl-2,2 '-bipyridyl iridium(III) hexafluorophosphate (DTBP) shows a remarkable photoluminescence quantum yield (PLQY) of 70%, and by adjusting the emissive-layer thickness, the maximal external quantum efficiency (EQE) reaches 22.15% at 532 nm under the thickness of 0.51 mu m, showing the state-of-the-art value for the reported blue-green LECs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要