Ganglioside GM1 Drives Hemin and Protoporphyrin Adsorption in Phospholipid Membranes: A Structural Study

JOURNAL OF PHYSICAL CHEMISTRY B(2024)

引用 0|浏览0
暂无评分
摘要
Monosialoganglioside (GM1), a ubiquitous component of lipid rafts, and hemin, an integral part of heme proteins such as hemoglobin, are essential to the cell membranes of brain neurons and erythrocyte red blood cells for regulating cellular communication and oxygen transport. Protoporphyrin IX (PPIX) and its derivative hemin, on the contrary, show significant cytotoxic effects when in excess causing hematological diseases, such as thalassemia, anemia, malaria, and neurodegeneration. However, the in-depth molecular etiology of their interactions with the cell membrane has so far been poorly understood. Herein, the structure of the polymer cushion-supported lipid bilayer (SLB) of the binary mixture of phospholipid and GM1 in the presence of PPIX and its derivative hemin has been investigated to predict the molecular interactions in model phospholipid membranes. A high-resolution synchrotron-based X-ray scattering technique has been employed to explore the out-of-plane structure of the assembly at different compositions and concentrations. The structural changes have been complemented with the isobaric changes in the mean molecular area obtained from the Langmuir monolayer isotherm to predict the additive-induced membrane condensation and fluidization. PPIX-induced fluidization of phospholipid SLB without GM1 was witnessed, which was reversed to condensation with 2-fold higher structural changes in the presence of GM1. A hemin concentration-dependent linear condensing effect was observed in the pristine SLB. The effect was significantly reduced, and the linearity was observed to be lost in the mixed SLB containing GM1. Our study shows that GM1 alters the interaction of hemin and PPIX with the membrane, which could be explained with the aid of hydrophobic and electrostatic interactions. Our study indicates favorable and unfavorable interactions of GM1 with PPIX and hemin, respectively, in the membrane. The observed structural changes in both SLB and the underlying polymer cushion layer lead to the proposal of a molecule-specific interaction model that can benefit the pharmaceutical industries specialized for drug designing. Our study potentially enriches our fundamental biophysical understanding of neurodegenerative diseases and drug-membrane interactions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要