Magnetic fields catalyse massive black hole formation and growth

Mitchell C. Begelman,Joseph Silk

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2023)

引用 0|浏览0
暂无评分
摘要
Large-scale magnetic fields in the nuclear regions of protogalaxies can promote the formation and early growth of supermassive black holes (SMBHs) by direct collapse and magnetically boosted accretion. Turbulence associated with gravitational infall and star formation can drive the rms field strength toward equipartition with the mean gas kinetic energy; this field has a generic tendency to self-organize into large coherent structures. If the poloidal component of the field (relative to the rotational axis of a star-forming disc) becomes organized on scales less than or similar to r and attains an energy of order a few percent of the turbulent energy in the disc, then dynamo effects are expected to generate magnetic torques capable of increasing the inflow speed and thickening the disc. The accretion flow can transport matter towards the centre of mass at a rate adequate to create and grow a massive direct-collapse black hole seed and fuel the subsequent AGN at a high rate, without becoming gravitationally unstable. Fragmentation and star formation are thus suppressed and do not necessarily deplete the mass supply for the accretion flow, in contrast to prevailing models for growing and fuelling SMBHs through disc accretion.
更多
查看译文
关键词
accretion,accretion discs,black hole physics,MHD,galaxies: formation,galaxies: nuclei,quasars: general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要