High-performance solar-blind photodetector based on amorphous BN in harsh environment operations

Le Chen, Jiajin Tai, Deyu Wang,Shuo Wang,Hongwei Liang,Hong Yin

APPLIED PHYSICS LETTERS(2024)

引用 0|浏览0
暂无评分
摘要
High-performance solar-blind photodetectors capable of operating in extreme environments are desirable for a wide range of applications, such as engine control, down hole drilling, space exploration, and environmental monitoring. Boron nitride (BN), with an ultrawide bandgap and high band edge absorption coefficient, is especially suitable for such application scenarios owing to its chemical and structural stability at high temperatures and radiative conditions, which, however, in turn, brings difficulties in synthesis of large-area continuous single crystalline BN. Here, we report highly robust solar-blind photodetectors based on amorphous BN (a-BN) films that can operate at high temperatures and high electric fields. The a-BN films are dense and uniform, grown at 500 degrees C using dual beam-assisted deposition method. The a-BN-based photodetectors exhibit high performance with a responsivity of 0.56 mA/W at 20 V under UV illumination of 222 nm and a high rejection ratio (R-222 nm/R-295 nm > 200 and R-222 nm/R-315 nm > 500). More importantly, these photodetectors demonstrate excellent responsivity and stability at high temperatures up to 500 K and high bias of 200 V without breakdown. The photocurrent mechanism at elevated temperatures is analyzed by temperature-dependent decay time of the temporal response, showing the electron-phonon interaction and self-trapped holes are dominant. Our work suggests that the deposition of such a-BN films offers a promising strategy toward highly environment-resistant solar-blind photodetectors.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要