Regulating interfacial thermal conductance with commensurate-incommensurate transitions at atomic-scale silicon/silicon interfaces

NANOSCALE(2024)

引用 0|浏览2
暂无评分
摘要
Interfacial thermal conductance (ITC) between two contact surfaces is an important factor in accurately measuring energy transfer and heat dissipation at the interface; however, it is still not fully resolved how to more effectively modulate the ITC and unravel the related inner mechanisms. In this study, the contribution of commensurability and normal load to ITC at the atomic-scale silicon/silicon interface is disclosed. The results manifest that the ITC gradually reduces with the transition from commensurability to incommensurability. This is because the reduced force constant at the incommensurate interface decreases the transmittance of phonons, leading to the suppression of high-frequency phonon excitation and a red shift in the phonon spectrum, thereby weakening the ITC. We further discovered that increasing the normal loads can significantly enhance the ITC in both contact states, and the reason is that the interlayer distance decreases with increasing normal loads, which strengthens the interfacial potential and force constant, consequently resulting in greater heat transfer efficiency. This paper reveals that interfacial thermal transport can be regulated by applying normal loads and changing the interfacial contact states. Interfacial thermal conductance (ITC) is an important factor in accurately measuring energy transfer and heat dissipation; however, it is still not fully resolved how to more effectively modulate the ITC and unravel the related inner mechanisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要