Continuous crop rotation increases soil organic carbon stocks in riverdelta?: A 40-year field evidence

SCIENCE OF THE TOTAL ENVIRONMENT(2024)

引用 0|浏览4
暂无评分
摘要
River deltas, as important food production centers, support 66 % of the world's population, together with other coastal areas. However, agriculture in river deltas is negatively affected by soil salinization and agricultural intensification. Improving the soil carbon pool is a mutually beneficial solution for maximizing crop production and improving climate resilience to secure food production. In this study, long-term croplands in the Yellow River Delta (YRD), with a wheat-maize (WM) rotation system and a single cotton (SC) cropping system, were selected to explore the changes in soil organic carbon (SOC) stocks and the driving mechanisms at 0-20 cm depth from 1980 to 2020. We found that, over the past 40 years, the SOC stocks in WM and SC croplands had increased by 10.05 Mg C ha(-1) and 7.44 Mg C ha(-1), respectively. The Random forest model revealed that in the WM croplands, soil N stock and available K were the most important driving factors of SOC stocks, while in SC croplands, soil type and salinity were the most important driving factors of SOC stock dynamics. An increase in soil salinity to 2.0 parts per thousand caused a 17.5 % loss in SOC stocks in SC croplands. Our results show that, in the long run, croplands with a WM rotation system have stronger carbon sequestration potential. Depending on the planting system, promoting crop carbon input under high soil nutrients and affecting SOC decomposition by soil salinity are two different pathways of SOC sequestration in delta croplands. We propose that nutrient management and organic fertilizer application are crucial for increasing SOC stocks in the WM and SC croplands, respectively. This study confirms that it is of practical significance to take measures to promote soil carbon sequestration at the farmland scale and to provide scientific guidance for the sustainable development of river delta agriculture.
更多
查看译文
关键词
Cotton,Driving factors,River deltas,Soil organic carbon stock,Wheat-maize
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要