Efficient synergistic degradation of Congo red and omeprazole in wastewater using rGO/Ag@ZnO nanocomposite

JOURNAL OF WATER PROCESS ENGINEERING(2024)

引用 0|浏览0
暂无评分
摘要
Photocatalytic degradation is an effective and eco-friendly technique that can address environmental pollution, especially water pollution. We prepared rGO-decorated with silver-doped zinc oxide (rGO/Ag@ZnO) nanocomposite as the efficient photocatalyst for Congo red and Omeprazole degradation. The nanocomposite was characterized using advanced spectroscopic and imaging techniques. The low band gap of 2.05 eV enables rGO/Ag@ZnO nanocomposites to be an efficient photocatalyst for the degradation of multiple pollutants. The BET analysis revealed that the rGO/Ag@ZnO nanocomposite possesses a substantial surface area of 51 m(2)/g, indicative of enhanced porosity, while the estimated surface area for Ag@ZnO is approximately 18.56 m(2)/g, reflecting the significant contribution of rGO to the composite's adsorptive properties. The rGO/Ag@ZnO nanocomposites showed an excellent 93.77 % degradation of Congo red in 40 min and 95.6 % degradation of Omeprazole in 30 min under the optimized conditions. The photocatalyst rGO/Ag@ZnO retains its efficiency over five cycles, providing a cost-effective, eco-friendly solution for continuous water pollutant treatment. The exceptional degradation efficiency of rGO/Ag@ZnO was achieved through optimization of the photocatalytic process while previously reported materials exhibit longer degradation times with lower degradation percentages (80-90 %). These excellent photocatalytic properties highlight rGO/Ag@ZnO as an effective and rapid solution to address the water pollution caused by different environmental contaminants. The results support the practical use of rGO/Ag@ZnO in real-world water treatment systems contributing to a healthier environment.
更多
查看译文
关键词
rGO/Ag@zno nanocomposite,Photocatalyst,Multi-pollutant degradation,Synergistic effect,Wastewater treatment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要