A flow control strategy for a near-wall square cylinder using porous media: A direct numerical simulation study

PHYSICS OF FLUIDS(2024)

引用 0|浏览0
暂无评分
摘要
The topic of flows around a near-wall square cylinder has garnered increasing attention in recent decades. However, there are a few publications that have focused on mitigating the occurrence of a substantial negative lift in near-wall flows. In light of this, the present study has developed a novel flow control strategy that covers porous media at inward corners of a near-wall square cylinder to address this problem. We achieve such a control strategy with the aid of a high-fidelity computational framework at Re = 1000. Direct numerical simulations are employed to account for accurate flow behaviors, and the Cartesian cut-cell method as well as an adaptive mesh refinement algorithm are advocated to simplify grid generation and reduce computational costs. Additionally, a quasi-microscopic flow model is introduced to model the porous medium pore structure, providing an intuitive and accurate description of internal flows within the porous medium. Six porous medium layouts are first designed, and their influences and mechanisms on flow control are assessed using the presented computational framework to identify an optimal strategy. The optimal strategy yields a notable reduction of 52.472% in the lift coefficient. The identified strategy is then applied to a case involving a near-wall square cylinder with a substantial negative lift, where a gap ratio of 0.6 is determined via parameterization. The capacity of the presented strategy in flow control of the near-wall square cylinder is fully explored and demonstrated via the consideration of different porosities. The results indicate that the most effective flow control is achieved when the porosity exceeds 90%, leading to a near-zero lift coefficient. Furthermore, the underlying mechanism contributing to the variations in flow control effectiveness due to different porosities is analyzed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要