Numerical simulation of hypersonic flat-plate boundary-layer blowing control

PHYSICS OF FLUIDS(2023)

引用 0|浏览0
暂无评分
摘要
Air-blowing is one of the techniques for active flow control and thermal protection system of hypersonic vehicles. Introducing air into the hypersonic boundary layer alters the cross-sectional profile of the boundary layer, thereby influencing the boundary-layer transition. This study investigates the active air-blowing control effects on the hypersonic flat-plate boundary layer under various blowing mass flow rates and incoming Mach numbers by solving the Reynolds-averaged Navier-Stokes equations with the Langtry-Menter four-equation transitional shear stress transport model. The study examined alterations in the blowing boundary-layer profiles under two conditions: natural and bypass transition, induced by different blowing flow rates. Blowing significantly alters the sonic line and boundary-layer profile characteristics, triggering blowing oblique shock and causing alterations in the instability mechanisms of the two transition states. A higher Mach number intensifies compressibility effects, stabilizing the boundary layer and leading to an increase in the thickness of the blowing boundary layer and air film.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要