Modulation of starch structure, swallowability and digestibility of 3D-printed diabetic-friendly food for the elderly by dry heating

Jinjin Huang, Min Zhang,Arun S. Mujumdar, Chunli Li

International Journal of Biological Macromolecules(2024)

引用 0|浏览0
暂无评分
摘要
Elderly people often experience difficulty in swallowing and have impaired regulation of the nervous system. Furthermore, their blood glucose level can rise easily after eating. Therefore, functional foods that are easy to swallow and can maintain blood glucose at a lower level have been an important research topic in recent years. In this study, 3D printing was combined with dry heating to modify the starch in white quinoa and brown rice to develop whole grain foods with Osmanthus flavor that meet the dietary habits of the elderly. The samples were tested for printability, swallowing performance, and in vitro digestion. The results showed that after dry heating, all samples had shear-thinning properties and could pass through the extrusion nozzle of the printer smoothly. Both white quinoa and brown rice showed improved printability and self-support compared to the control. B45 (white quinoa, dry heating for 45 min) and C45 (brown rice, dry heating for 45 min) had significant elasticity and greater internal interaction strength during swallowing to resist disintegration of food particles during chewing. B45, C30, and C45, conformed to class 4 consistency and were characterized by easy swallowing of the diet. Further, dry heating resulted in greater resistance to enzymatic degradation of white quinoa and brown rice starch, with overall in vitro digestibility lower than the control.
更多
查看译文
关键词
3D printing,Dry heating,Dysphagia,Whole grain,Resistant starch,In vitro digestion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要