TDASD: Generating Medically Significant Fine-Grained Lung Adenocarcinoma Nodule CT Images Based on Stable Diffusion Models with Limited Sample Size

Computer Methods and Programs in Biomedicine(2024)

引用 0|浏览2
暂无评分
摘要
Background and Objectives Spread through air spaces (STAS) is an emerging lung cancer infiltration pattern. Predicting its spread through CT scans is crucial. However, limited STAS data makes this prediction task highly challenging. Stable diffusion is capable of generating more diverse and higher-quality images compared to traditional GAN models, surpassing the dominating GAN family models in image synthesis over the past few years. To alleviate the issue of limited STAS data, we propose a method TDASD based on stable diffusion, which is able to generate high-resolution CT images of pulmonary nodules corresponding to specific nodular signs according to the medical professionals. Methods First, we apply the stable diffusion method for fine-tuning training on publicly available lung datasets. Subsequently, we extract nodules from our hospital's lung adenocarcinoma data and apply slight rotations to the original nodule CT slices within a reasonable range before undergoing another round of fine-tuning through stable diffusion. Finally, employing DDIM and Ksample sampling methods, we generate lung adenocarcinoma nodule CT images with signs based on prompts provided by doctors. The method we propose not only safeguards patient privacy but also enhances the diversity of medical images under limited data conditions. Furthermore, our approach to generating medical images incorporates medical knowledge, resulting in images that exhibit pertinent medical features, thus holding significant value in tumor discrimination diagnostics. Results Our TDASD method has the capability to generate medically meaningful images by optimizing input prompts based on medical descriptions provided by experts. The images generated by our method can improve the model's classification accuracy. Furthermore, Utilizing solely the data generated by our method for model training, the test results on the original real dataset reveal an accuracy rate that closely aligns with the testing accuracy achieved through training on real data. Conclusions The method we propose not only safeguards patient privacy but also enhances the diversity of medical images under limited data conditions. Furthermore, our approach to generating medical images incorporates medical knowledge, resulting in images that exhibit pertinent medical features, thus holding significant value in tumor discrimination diagnostics.
更多
查看译文
关键词
Data Augmentation,Generative Models,Lung Adenocarcinoma,Privacy Protection,Stable Diffusion,Transfer Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要