Overcoming strength-toughness trade-off in a eutectic high entropy alloy by optimizing chemical and microstructural heterogeneities

Zhaoqi Chen, Wenqing Zhu,Hang Wang,Quanfeng He,Qihong Fang, Xiaodi Liu,Jia Li,Yong Yang

COMMUNICATIONS MATERIALS(2024)

引用 0|浏览3
暂无评分
摘要
The well-known strength-toughness trade-off has long been an obstacle in the pursuit of advanced structural alloys. Here, we develop a eutectic high entropy alloy that effectively overcomes this limitation. Our alloy is composed of face-centered cubic and body-centered cubic crystalline phases, and demonstrates attractive mechanical properties by harnessing microstructural hybridization and a strain-induced phase transition between phases. Unlike conventional eutectic alloys, the compositionally complexity of our alloy allows control of its microstructural and chemical heterogeneities across multiple length scales, ranging from atomic- and nano-scales to meso-scales. Optimizing these microstructural and chemical heterogeneities within our alloy enables high strength and ductility because of enhanced fracture resistance, outperforming alternative high and medium entropy alloys with similar compositions and microstructures. Overcoming the strength-toughness trade-off is a key goal of alloy engineering. Here, a two-phase eutectic high entropy alloy is reported that harnesses microstructural and chemical heterogeneity to achieve high toughness and ductility.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要