Computational methods meet in vitro techniques: A case study on fusaric acid and its possible detoxification through cytochrome P450 enzymes

Ecotoxicology and Environmental Safety(2024)

引用 0|浏览2
暂无评分
摘要
Mycotoxins are known environmental pollutants that may contaminate food and feed chains. Some mycotoxins are regulated in many countries to limit the trading of contaminated and harmful commodities. However, the so-called emerging mycotoxins are poorly understood and need to be investigated further. Fusaric acid is an emerging mycotoxin, noxious to plants and animals, but is known to be less toxic to plants when hydroxylated. The detoxification routes effective in animals have not been elucidated yet. In this context, this study integrated in silico and in vitro techniques to discover potential bioremediation routes to turn fusaric acid to its less toxic metabolites. The toxicodynamics of these forms in humans have also been addressed. An in silico screening process, followed by molecular docking and dynamics studies, identified CYP199A4 from the bacterium Rhodopseudomonas palustris HaA2 as a potential fusaric acid biotransforming enzyme. Its activity was confirmed in vitro. However, the effect of hydroxylation seemed to have a limited impact on the modelled toxicodynamics against human targets. This study represents a starting point to develop a hybrid in silico/in vitro pipeline to find bioremediation agents for other food, feed and environmental contaminants.
更多
查看译文
关键词
Fusaric acid,Cytochrome P450 enzymes,Mitigation,Bioremediation,Hybrid approach,Molecular modelling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要