A revolutionary design concept: full-sealed lithium-oxygen batteries

NANO ENERGY(2024)

引用 0|浏览4
暂无评分
摘要
At this moment, non-aqueous rechargeable lithium-oxygen batteries (LOBs) with extremely high energy density are regarded as the most viable energy storage devices to potentially replace petroleum. One of the most crucial impediments to their implementation has been ensuring facile oxygen availability. Moreover, as semi-sealed systems, LOBs have confronted challenges including oxygen impurities, product degradation, anode corrosion, frequent side reactions, and mediocre cycling performance. In this work, utilizing the physical adsorption of porous (micro-, meso- and macro-porous) solid carbon materials, we incorporate an oxygen storage layer (OSL) with reversible oxygen ad/desorption capabilities into a LOB to develop novel fully-sealed lithium-oxygen batteries (F-S-LOBs). The results demonstrate mesoporous carbons exhibit optimal oxygen adsorption/desorption kinetics, rendering them highly suitable for F-S-LOBs without developing complex oxygen-permeable membranes or carrying oxygen tanks. The OSL fabricated with mesoporous carbon can sustain battery charge/discharge at various current densities with exceptional cycling performance. Additionally, we provide approximate pore size guidelines for oxygen storage materials to aid future research. This study is anticipated to offer a new robust research direction for metal-air batteries and to forge a new path toward promoting the commercialization and development of this technology.
更多
查看译文
关键词
Oxygen/air batteries,Adsorption and desorption mechanism,Oxygen storage layer,Full-sealed lithium-oxygen battery,Mesoporous carbon
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要