Metal-free Flexible Triboelectric Nanogenerator based on Bifunctional Carbon Fiber for Mechanical Energy Harvesting and Human Activity Monitoring

Sensors and Actuators A: Physical(2024)

引用 0|浏览0
暂无评分
摘要
Conductive electrodes in triboelectric nanogenerators (TENGs) typically use metal-based materials. However, such devices have limited flexibility and challenges in humid environments. To overcome this issue, we present a metal-free flexible TENG made from bifunctional carbon fiber paper that serves as both a conductive electrode and an efficient tribo-positive friction layer. The electrical performance of carbon fiber paper-based TENG (CFP-TENG) at 3Hz demonstrated a peak-to-peak voltage of 109.1V, a current of 10.8 μA, and a power density of ~ 0.093W/m2 at 7MΩ external resistance. A 20 µF capacitor is also charged, and 38 light-emitting diodes (LEDs) arranged in the letter 'DGU' can be lighted. The CFP-TENG device's high flexibility allows it to sustain 12,000 repeated mechanical contact-separation cycles and fold, twist, and roll the device without degrading performance. In addition, the hydrophobic characteristic of carbon fiber ensures the improved moisture resistance of the CFP-TENG device compared to conventional copper electrodes. Furthermore, the CFP-TENG is successfully integrated into various human joints as a self-powered motion sensor for tracking real-time human activity monitoring, including finger motion detection, arm motion, walking, and running activities. A metal-free TENG based on bifunctional carbon fibers paves the way for energy- harvesting solutions and self-powered biomedical sensors.
更多
查看译文
关键词
Triboelectric nanogenerator,carbon fiber paper,metal-free,energy harvesting,wearable device
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要