Porous and graphitic carbon nanosheets with controllable structure for zinc-ion hybrid capacitor

Journal of Colloid and Interface Science(2024)

引用 0|浏览3
暂无评分
摘要
The imbalances of storage capacity and reaction kinetics between carbonaceous cathodes and zinc (Zn) anodes restrict the widespread application of Zn-ion hybrid capacitor (ZIHC). Structure optimization is a promising strategy for carbon materials to achieve sufficient Zn2+ storage sites and satisfied ion–electron kinetics. Herein, porous graphitic carbon nanosheets (PGCN) were simply synthesized using a K3[Fe(C2O4)3]- and urea-assisted foaming strategy with polyvinylpyrrolidone as carbon precursor, followed by activation and graphitization. Sufficient pores with well-matched pore sizes (0.80–1.94 nm) distributed across the carbon nanosheets can effectively shorten mass-transfer distance, promoting accessibility to active sites. A partially graphitic carbon structure with high graphitization degree can accelerate electron transfer. Furthermore, high nitrogen doping (7.2 at.%) provides additional Zn2+ storage sites to increase storage capacity. Consequently, a PGCN-based ZIHC has an exceptional specific capacity of 181 mAh g−1 at 0.5 A g−1, superb energy density of 145 Wh kg−1, and excellent cycling ability without capacity decay over 10,000 cycles. In addition, the flexible solid-state device assembled with PGCN exhibits excellent electrochemical performances even when bent at various angles. This study proposes a straightforward and economical strategy to construct porous graphitic carbon nanosheets with enhanced storage capacity and fast reaction kinetics for the high performance of ZIHC.
更多
查看译文
关键词
Carbon nanosheet,Nitrogen doping,Capacitor,All-solid-state,Flexibility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要